If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15b^2+4b-15=0
a = 15; b = 4; c = -15;
Δ = b2-4ac
Δ = 42-4·15·(-15)
Δ = 916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{916}=\sqrt{4*229}=\sqrt{4}*\sqrt{229}=2\sqrt{229}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{229}}{2*15}=\frac{-4-2\sqrt{229}}{30} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{229}}{2*15}=\frac{-4+2\sqrt{229}}{30} $
| 4x+9=5x+1 | | 11x+11x=22x | | 7n-3=3-2n | | 3c+3=13+c | | 8x+1=0x+6 | | 3(x-4)-6(x-4)=6-2x | | -4(2+7r)+6(-3r+8)=40 | | O.25x=99 | | 4x+9=3x+1 | | 4(n-2)=2n-6 | | 250+110m=220-150m | | 7(w-1)-7=-4(-3w+5)-9w | | y=1($1.25) | | -2x+-x=-17 | | x²+7x-18=0 | | 5x+25=2x+29 | | a8=a−17 | | 8x+9=3x+1 | | -16-32x+28x+4x=-272 | | 3n+3n=2n | | 12(x-5)=11(x+5) | | 6x+9=5x+0 | | 8.2(2+4)=6.7s+5.2 | | 9x^2-6x+1=16 | | 1x+30=14-3x | | 5(n+3)=3(3n-1) | | 144p^2-100=0 | | 12a+60=5a+26 | | 3(8)+1c=38 | | 12a=+60=5a+26 | | 3r+15+5r-27=90 | | 0.53•k=3.498 |